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Definitions

* Global risks are defined each year by the World Economic Forum
(WEF) which defines Global Risk Networks for its meeting in Davos
since 2000. We are building models of this networks starting with
the 2013 Global Risk Network™ but using data from all networks.

 Each WEF report identifies 30-50 global risks that are classified
into five broad categories of economic, environmental,
geopolitical, societal and technological risks.

 The report contains also an assessment of the risks potential
impact, interconnectedness and likelihood of materialization in
the next 10 years prepared by over a thousand industrial,
governmental, and academic experts.

World Economic Forum Global Risks Report (2013) gQ“LC/%
http://www.weforum.org/reports/global-risks-2013-eighth=edition =i ‘fi iz
X% 23
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An Example of 2018 Report Data’

Distribution of likelihood and
impact for 30 global risks
grouped into five categories
indicated by the color of risk
node by GRR18"

*

http://www3.weforum.org/docs/W
EF_GRR18_Report.pdf
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Dynamics of Global Risk Failures

* Eachriskis a node in the global risk network and is assigned
likelihood of failure in the next 10 years and the failure economical

impact by the 20-25 experts in this risk”.

* The risk network is a Stochastic Block Model (SBM) graph™ with the
average node connectivity 20.6 and undirected weighted edges
representing risks influence of nodes on each other.

* The optimal model can measure how decreasing the strength

of some critical network nodes and edges can decrease probability
of future failures.

"World Economic Forum (2013) http://www3.weforum.org/tools/rrn/wef grr/20130108/server/getrisks.json

""R. Holland, K. Laskey & S. Leinhardt, Stochastic blockmodels: first steps. Soc. Networks 5:109—137 (1983)
QQ\’YTEC/S’,I,
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Visualization of Inter-group Connectivity

Group 1 Group 3
P,,=052

Node’s color

% 2% Sy 4 indicate its
fai" | N e 7 It total
s connectivity
&
Q™ P, = 0.30

Node’s size
indicates its
internal

likelihood of
activation

Group 4 Group 2

The number of inter-group links indicates the
GQZ) strength of connectivity between a pair of groups
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Alternating Renewal Processes™: Discrete Model

Each risk at time t is either at state 1 (materialized also called active) or
state O (not materialized also called inactive) but can transition to a new
state in the next time instance by one of the three processes.

Process 1. For arisk j, given that it is in state O, its internal
materialization is a latent Poisson process with intensity A/,

Process 2. Given that the risk i is in state 1, its recovery from this state is
an observable Poisson process with intensity A /<.

Process 3. Given that risk i is in state 0, and risk j connected to it in state
1, the materialization of risk i due to the external influence of risk j is a
latent Poisson process with intensity A& (which is independent of j).

Only cumulative effect of Processes 1 and 2 is observable.

%4

GQb "D.R. Cox & H.HD. Miller, The Theory Of Stochastic Processes (Methuen, 1965) glf ‘f
%g

!
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that at each time step t: L-p=(B) “~o | Pi™(B)
Materialized risks Risk |
A risk i that was inactive at time t - 1 |
materializes internally with probability pint —1_e o
i

A risk j active at time t - 1 causes a connected risk i inactive at
ext

: ) - . . Y
time t - 1 to materialize with probability p;ﬂ —l—e f = piext

A risk i that was active at time t — 1 recovers from its

active risk with probability Jrec
rec _1_ %
p; =l-e §E
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Model Parameters

Normalizing the likelihood values, L, given in the range [1, 5] to their
natural range of [0, 1], we obtain:

N, = (Li'l)/4

This normalized likelihood values N, are in direct proportion to the
expert assessment L; and for our purposes captures the node’s
vulnerability to a failure.

Probability of internally triggering inactive risk is:
int a
p, =1-(1-N.)
Probability of active risk recovering to inactive state is:
rec ¥
p =1-N
Probability of triggering externally inactive risk i by active risk j is:

p=1-(1-N)’

EONTE i,
‘3 i s
SCNARC Failures, Dynamics, Evolution and Control of the Global Risk Network By World Economic Forum & /\\Ay



&b

SCNARC

Outstanding Questions

Limits of parameter recovery
Evolution of the WEF model over years
Control of the global risk network

Conclusion
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Model Parameters

Normalizing the likelihood values, L, given in the range [1, 5] to their
natural range of [0, 1], we obtain:
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vulnerability to a failure.

Probability of internally triggering inactive risk is:
int a
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AONTE [,
=i WP 2
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Parameter Recovery Formulation

We have four parameters for each Poisson process. The relationship between the
intensities and parameters are: int :
P A™ =—qIn(l- N)

A% =—BIn(1- N )
A =—yIn(N)

N reflects the properties of risk /.

To find the optimal values for the parameters, we implement parameter recovery on
the historical data using Maximum Likelihood Estimation (MLE). The likelihood L() of

observing a sequence S(1) —» S(2),---S(T — 1) —» S(T) of risk materialization events,

where S(t) denotes the state of all risks at step t, can be written as:
T-1 R

In L(S(1) = SQ2),++.ST =)= S(T) = 3 n p, (1)

t=1 i=1
where T is total size of historical data, R is the number of risks, s(t) is the state of risk i

at step t, and p; (t)si(t)_’si(”l) denotes the probability of transition for risk i at step t.

The optimal values for parameters are those that maximize the likelihood @LYTE%
GQD of observing the historical data with the assumed distribution. 57/ === "

al !T
%éw, B2

?

,\9
‘//HligN\
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MLE" Values of Parameters

* By scanning different combinations of a, [ and y over their respective
acceptable ranges, and by computing the resulting log-likelihoods, we find with
the desired precision the values of a, f and y that maximize the likelihood of
observing the data.

e The likelihood function is itself smooth with a unique maximum that
guarantees that the found parameter values are indeed globally optimal for

the model considered.
. a=0.364=4/11, 6=0.14=1/7, y=427

-501.65

-501.7

In £ -501.75

-501.8

-501.85
2.5

x10~

§] 1.5 5.5 o ~y 3.4 55 o ¥y 34 15 B

*Y. Pawitan, In All Likelihood: Statistical Modelling And Inference Using Likelihood (Clarendon, 2001)
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Historical Data of Global Risks

* We collected data on the materialization of each risk over the period 2000 — 2017.
* The source of data is news, magazine, academic articles and websites.
* Thereare 50 * 13 * 12 = 7800 data points for finding system parameters for 2013.

m Influence Period Reference

.. . Global and 2011.05
Crisis in Syria ---

Global i
serious 2012.12

Governance
Failure (19)

Global and 2011.02
Crisis in Libya obatdan ---

serious
2012.12

http://en.wikipedia.org/wiki/Syrian Civil War
http://www.usaid.gov/crisis/syria
http://www.cbsnews.com/feature/syria-crisis/
http://www.bbc.com/news/world-middle-east-
17258397

http://en.wikipedia.org/wiki/Libyan Civil War
http://www.nytimes.com/2013/10/11/opinion/lib
yas-security-
crisis.html?gwh=3863288CE0B70560093F7E40D02
54D5D&gwt=pay
http://www.bbc.com/news/world-middle-east-
12480844

The optimal values of model parameters a, B, y based on collected data

Year Edges Edge Avg. Dlame
Degree Prob. CC.

2013
2017 30 275

20.60
18.33

0.42
0.63

0.61
0.74

0.364
0.634

0.140
0.364 300
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http://www.nytimes.com/2013/10/11/opinion/libyas-security-crisis.html?gwh=3863288CE0B70560093F7E40D0254D5D&gwt=pay
http://www.bbc.com/news/world-middle-east-12480844
http://www.bbc.com/news/world-middle-east-12480844

Contagion Potentials Versus Internal Vulnerability

Highest
contagion
@ potential
Group 1 Q i * % Group 3
P1=082 4 Ps=073
e vgh vV
y . L ] . - . Global governance failure
Five risks with the highest = @ T ANLY /
contagion potential in 2013 were: T 2 VEaaBS S — 9
8 -- Severe income disparity ® 5 N/
25 - GIObaI government failure . Severe income disparity‘ . Per\/asiv;entrenched corruption
1 - Chronic fiscal imbalances g e N |
- T . ISing greennouse gas emissions
27 — Pervasive entrenched * ] AN l
corruption A N @& \/ K
12 -- Failure of climate change I . N X |
adaptation ¥ @ . '®
14
H i
® 12
Group4 | Water supply crises | ‘ 20 I
P,=051 9 ® Group 2
18 P,=0.58 Lowest
Group 5 &

contagion
Ps=0.27

potential
Network visualization showing the contagion potentials (indicated by color) and the
internal failure probabilities (indicated by size) with the optimal parameters.

Failures, Dynamics, Evolution and Control of the Global Risk Network By World Economic Forum



Asymptotic (Steady State) Risk-Persistence for 20i93

Persistence
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Conclusions Based on the Network Model

 For 2013 data, we rank order the persistence of various risks
during the lifetime of a cascade. Strikingly, risk 8 - “Severe
income disparity” - was active for about 80% of the lifetime of a
cascade on average, while in comparison, the second most
persistently active risk - “Chronic fiscal imbalances” - was active
for about 33% of the lifetime of a cascade on average.

* Decreasing the internal failure and external influence
probabilities of global risks both contribute to the stability of the
global economy, with reduction of internal failure probabilities
contributing more effectively.

&%
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Measuring Quality of Predictions

* In the global risk network, we recover latent (hidden) and explicit
parameters of the model from historical data and predict future
activation of global risks, including cascades of such risk activations.

* The question arises how reliable such parameter recovery is and
how the recovery precision depends on the complexity of the
model and the length of its historical data.

* Here, this model is applied to fire propagation in an artificial city
with modular blocks that can be assembled into a complex system.

* We simulate the fires in such cities of varying size, over varying
periods of times and use the Maximum Likelihood Estimation to
recover the parameters and compare them with the values
assigned to them in simulations.

?“LYTEC/y
* X. Lin, A. Moussawi, G. Korniss, J.Z. Bakdash, and B.K. Szymanski, Limits of Risk Predictability < “:; "‘i/
In a Cascading Alternating Renewal Process Model, Scientific Reports 7:6699, (2017) ;};jf ‘;i c\f;
B S
viw w
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Model Details

In the firehouse model, three types of houses are defined: small, medium and large.

For each house, the quality of its building material and size of its lot are proportional
to its size (type).

Each house fire worthiness properties, such as resistance to fires, ability to spread fire,
etc. are determined by its type and the housing density in its neighborhood.

Large houses have a low probability of catching fire and a high ability to recover from
burning, while medium and small houses have increasingly lower characteristics.

Each house has an influencing circle with a fixed radius, in which all the neighbors
inside the circle are at risk of being catching fire from this house.

We can expand the city by adding blocks horizontally and vertically.

LI e IR R AN SES SEEE
olofo o) Sttt At

\-___/ RI20000,
PO TE £
A RO,
\/ gﬁf" ; v,{‘lf/c\

CSQD Large houses Medium houses Small houses 3 ‘i'%
7 N
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Model Dynamics - Probabilities

At time t, a house is in one of three states: susceptible (0), on-fire (1), recovery(-1)
The dynamics progresses at each time step t > 0 as follows:

1.

. House j that was susceptlble at time t—1 catches flre externally from on-fire

House i susceptlble at time t-1 catches fire internally at time t with probability:

pr=1-e @ —

neighbor j at time t with probab|l|ty.

P le"zpfxt ﬁ\ﬁ

. House i on-fire at time t—1 is extinguished and enter the recovery state at time t

with probability: e ~
et — I

House i in-recovery at time t—1 becomes susceptible at time t with probability:

rec

R -

&%
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Model Comparison — Discrete vs. ODE

Three state comparisons in torus model

On-fire house comparison in torus mode|
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The higher the model connectivity, the better the match between

discrete and ODE results.
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Fraction of On-fire Time in Simulation

(A) Degree of each house (B) Fraction of on-fir? time

* Time steps of simulation: 10,000
e Counts at how many time steps each house is on fire
* Averaged 20 independent realizations

o =i,
A %
LT_‘I ¥ L L7
5 o

SCNARC Failures, Dynamics, Evolution and Control of the Global Risk Network By World %;b,b
1
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Measuring Performance of Estimated Parameters

 We generate 125 sets of time series for 6400 steps using ground truth
parameters: « = 0.008, f = 0.012, y = 0.016, § = 0.032 and compute
estimated parameters from each of time series using Maximum Likelihood
Estimation.

* Using sets of estimated parameters, we simulate multiple lengths of future
periods: 400, 800, 1600, 3200 and 6400 and record the length of normal, on-
fire and recovery state as well as the number of emerging fires during the
period; results are averaged over 20 realizations.

 We compute the difference between these estimated parameters and the
ground truth parameters and, determine, using Kolmogorov-Smirnov metric
the +o distance between estimated parameters and ground truth
parameters.

* Finally, we find the +0 boundary of each set of estimated parameters by
removing the largest 39 sets of results; the remaining results contain 68% of
all sets of estimated parameter values, that are closest to the ground truth.

SO TE s,

: f‘rl’f ==

B3 " S
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Parameter Recovery in Global Risk Network
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Parameter Recovery in Global Risk Network
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Conclusions and Future Plan 3

Conclusions

Studying the prediction limit of an interconnected network of risks using

Alternative Renewal Process, we find that:

* Simulations of discrete and continuous (ODE) risk models match each other
with precision improving with the increasing model connectivity.

 The parameter recovery performance improves and its error decreases when
the volume of training data grows.

* The relative error reduces asymptotically to zero with unlimited growth of

training data.

Future Plans

* Implementing parameter recovery for more complex models

* Measuring the prediction accuracy using statistical metrics

e Studying applications combining human expert assessment with the
stochastic computer predictions based on MLE recovered parameters

SCNARC Failures, Dynamics, Evolution and Control of the Global Risk Network By World
Economic Forum
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Risk control example

O Failure of climate-change mitigation
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Reactive control example

1 Optimal Energy
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Proactive control example
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* Prevention is better than Governance in terms of cost.

State x
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Example: COVID-19 Control

Formally defined optimal control in the risk networks: x(k + 1) = F[x(k)] + G[x(k),E] + BU

Established a function of controllability index and corresponding optimal energy and conditions for
nonnegative optimal control

Provided a universal methodology of applying the LQR control in real world networked systems

Qualitative analysis of COVID-19 governmental policies

o Control costs for 7632 random samples of 7 driver nodes
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Optimize functions

(a) Optimal energy

[
energy = 0.2331
X 05 : o controf cost=10.2331
x e total cost = 60.433
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Time step k
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Contributions:

Formally defined optimal control in the risk networks:

x(k+1) =F|[x(k)] +G[x(k),E] + BU

Established a function of controllability index and corresponding optimal

energy:

* Controllability index{ = N/Nj

» Upper bound of optimal energy J, = ¢1°N/Np

Established condition for nonnegative optimal control: N = Np

Quantitively analyzed the tradeoffs between control and state costs in

Reactive and Proactive phases:

&b

SCNARC Failures, Dynamics, Evolution and Control of the Global Risk Network By World

* Reactive: cost is almost linearly related to the controlled number of active risks
* Proactive: cost is proportional to the potential risk activities

* Prevention is better than Governance: the cost in the proactive phase is much
smaller than that in the reactive phase
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Contributions:

* Provided a universal methodology of applying the LQR control in real world networked
systems:

* Built a flight-delay network with five million flights record in 2015.
* Built a delay cost matrix Q and aircraft cost matrix R according to official statistic data

* Provided significant results on flights control:
* LQR control saves around 90% time for the customer and 70% cost for the society on average.
* In over 5000 unique flights, almost every single one benefits from the LQR control.

* Provided significant results on airports control:
* The small airport in the inland area benefits more than large international one in the coastal area
* In over 300 airports, almost every single one benefits from the LQR control.

* Discovered that the airline ranking by simulated steady states in the CARP model are highly
(above 0.8) correlated with Airline Quality Ranking.

e Submitted to:

* X. Niuy, C. Jiang, J. Gao, G. Korniss, and B. K. Szymanski. Data-driven control of networked risks with
minimal cost. Nature Communications, 2019
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Questions?

&%
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